I. Tomorrow we will be adding and subtracting polynomials, in order to do that we must first learn about polynomials. Let's start at the beginning.

A monomial is a number, variable or product of numbers and variables.

ex: 3,
$$x$$
, -20 y , $4x^2$

Two monomials added together is called a binomial.

ex:
$$3 + x$$
, $2x^2 - x$, $3x - 2$

Three monomials added together are called a trinomial.

ex:
$$x^2 + 3x - 7$$
, $3x^5 - 8x^2 + 16x$

More than three monomials added together are called a polynomial.

ex:
$$-3x^3 + 2x^2 - 7x + 4$$
, $x^5 - 4x^3 + 3x^2 - 6x - 12$

Classify (name) the following polynomials by number of terms.

1.
$$3x-5$$

2.
$$6x^3 - 5x + 2$$

3.
$$4x^4 - 3x^7 + 4x^2 + x - 2$$

4.
$$2x^3$$

5.
$$5x^5 - 13x + 271$$
 6. $144x^4 - 9$

6.
$$144x^4 - 9$$

II. We also classify polynomials by degree.

The largest exponent of a polynomial determines the degree of the polynomial.

- If the largest exponent is zero it is called constant. Ex. $12x^0 = 12$
- If the largest exponent is 1 it is called linear. Ex: 3x
- If the largest exponent is 2, it is called Quadratic. Ex: $4x^2$
- If the largest exponent is 3, it is called Cubic. Ex: $3x^3$
- If the largest exponent is 4, it is called Quartic. EX: $2x^4$
- If the largest exponent is n, it is called n^{th} degree. Ex: $3x^n$

Classify (name) the following polynomials by degree.

7.
$$3x-5$$

8.
$$6x^3 - 5x + 2$$

9.
$$x-2$$

10.
$$2x^3$$

11.
$$5x^2 - 13x + 271$$
 12. $144x^4 - 9$ 13. 51

12.
$$144x^4 - 9$$

14. Complete the following table: (The first row has been done for you)

Polynomial	Leading	Degree	Classify by	Classify by
·	Coefficient	0, 1, 2, 3	Degree	Number of Terms
$3x^2 + 5x - 7$	3	2	Quadratic	Trinomial
2x ³				
$x^3 - 4x^2$				
$3x^3 + 2x^2 - 1$				
6				
-4x				
-123				
2x + 5				
3x ²				
$3x^{2}-4$				

III. The order of a polynomial is important. We organize a polynomial in standard form which means that the terms are placed in descending order from largest degree to smallest degree.

Ex:
$$7x^5 - 3x^4 + x^3 - 2x^2 + 4x - 12$$

15. Circle the following polynomials that are ordered in standard form. Rewrite the others in standard form.

$$1-2x$$

$$4x - 2$$

$$3x^2 - 3x - 3$$

$$4x-2$$
 $3x^2-3x-3$ $4x^3-2x^4+6$

$$6x^{6} - 2x$$

$$6x^6 - 2x 5x^5 - 8x^4 - 3x^2 + 4x^3 - 1$$

$$5x^2 - 3x + 2$$